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Stability of a regular polygon of finite vortices 
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(Received 20 April 1990 and in revised form 2 July 1991) 

It is well known that a system of N point vortices arranged in a circular row, so that 
the vortices are at  the vertices of a regular polygon, is stable ifN < 7, neutrally stable 
if N = 7 and unstable if N > 7 (Havelock 1931). The effect on this result of taking 
account of the finite size of the vortices is considered analytically. The vortices are 
considered to be uniform with small but finite core. Approximate equations for the 
shape and motion of a vortex subjected to an external velocity field are given and 
used to evaluate the shape and angular velocity of rotation of the system and to 
study its stability to plane infinitesimal disturbances. It is found that the system is 
stable if N < 7 and unstable if N 2 7. These asymptotic results for small core area are 
in general consistent with Dritschel (1985) where the motion and stability of up to 
N = 8 finite vortices is evaluated numerically; the steady configuration and the 
stability results for these values of N are in agreement except in a region of parameter 
space where a high degree of accuracy is required in the numerical calculation to 
resolve the growth rate of small disturbances. The case of a linear array of finite 
vortices is obtained as a special limiting case of the system. The growth rate of plane 
infinitesimal disturbances for this case is given. 

1. Introduction 
In fluid flows where most of the vorticity is confined to small two-dimensional 

patches or layers, the induced velocity field away from these regions can be 
approximated by regarding the vorticity regions to be represented by single point 
vortices or vortex sheets embedded in inviscid and irrotational fluid. The stability of 
these idealized systems to infinitesimal disturbances may be studied with some 
physical justification since the possible existence of the represented flow requires that 
the canonical flow is stable to small perturbations. Such studies date back to Kelvin 
and Rayleigh. 

However, it is possible that such singular distribution of vorticity can give rise to 
spurious instabilities and it is desirable to consider an improved model of the flow by 
taking account of the finite size of the patches and layers. In the case of a vortex 
sheet, it is well known that taking account of the thickness of the vortex layer which 
it represents suppresses the growth of short-wave disturbances to the sheet. This 
appears to have sometimes led to the misconception that for any vortex system, 
greater stability will be predicted if the finite size of the region of vorticity is taken 
into account than otherwise. The available evidence, however, does not bear this out. 

A single row of point vortices is unstable while a staggered row is stable only for 
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a particular aspect ratio (Lamb 1975, pp. 225-229). Saffman & Szeto (1981) have 
shown that a single row of finite-cored uniform vortices is also unstable (in fact, as 
we shall see in $4, the growth rate of plane disturbances is greater). Further, Meiron, 
Saffman & Schatzman (1984) have shown that in the case of the staggered array of 
finite-cored vortices, while finite size stabilizes certain modal instabilities, the array 
is again unstable except for a particular value of the aspect ratio which depends on 
the core size. It is believed that similar results will hold if the cores have a non- 
uniform distribution of vorticity. In the case presented here, finite size has a 
destabilizing effect. 

The study of the stability of linear arrays of vortices is relevant to flows associated 
with shear layers and wakes behind bluff bodies. The corresponding study of a 
system of vortices arranged along the circumference of a circle is relevant to stability 
of the flow associated with a curved shear layer. The stability of a system of N point 
vortices positioned at the vertices of a regular polygon was first studied by Kelvin 
and J. J. Thompson (for N < 7) .  It was, however, Havelock (1931) who proved the 
result that the system is stable if N < 7, neutrally stable if N = 7 and unstable if 
N >  7. 

In this paper, we consider the effect on this result of taking account of the finite 
size of the vortex core. Thus we consider the stability of a system of N identical 
uniform vortices of finite core positioned a t  the vertices of a N-sided regular polygon. 
We consider the limiting case in which the area A of the core is small compared to 
nu2, where a is the radius of the circle on which the polygon lies and represents a 
typical length associated with the motion of the vortices. 

The system can become unstable through disturbances which either displace each 
vortex from its quasi-steady state or deform its shape. Here, we shall be solely 
concerned with the former type of disturbances, this being justified provided that the 
size of the vortex core is small enough. The change in the displacement of the vortex 
can be followed by considering the motion of the vortex centroid. 

Approximate equations for the motion of the centroid of a uniform vortex of small 
core when placed in an external velocity field were derived by Kida (1982). In $2, 
these are rederived using a complex potential formulation ; the equations are here 
obtained to a higher order in core area. 

These equations are used in $3  to obtain, analytically, the steady shape of the 
vortices and angular speed of rotation of the system. In $4, the stability of the system 
to plane infinitesimal disturbances is considered. It is found that the system is stable 
for N < 7 and unstable for N 2 7, the growth rate of disturbances increasing with core 
size. The limiting case of a linear array of finite uniform vortices is obtained as a 
special case and the growth rate of disturbances for this case is obtained. 

A numerical investigation of this problem for N < 8 vortices was carried out by 
Dritschel (1985). The shape of the vortices and the period of rotation of the system 
in steady motion, for these values of N, as obtained by the present approximate 
method agree well with the corresponding numerical results for vortices of small core 
size. The angular speed of rotation of the system for two and six vortices is also 
shown to agree well with the corresponding results obtained using contour dynamics 
as respectively provided by Melander, Zabusky & Styczek (1986) and a referee. 
Dritschel considers the stability of the system to displacement-type disturbances as 
well as those which deform the shape. He finds that displacement-type modes are 
stable if N < 7 and unstable if N = 7 or 8, which is consistent with the present 
results. However, whereas in the present study, the case N = 7 is unstable to only one 
normal mode of disturbance, Dritschel finds that it is unstable to two displacement- 
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type modes. Since in the case N = 7 the system of point vortices is neutrally stable, 
the leading term in the dispersion relation for the growth rate of small disturbances 
can be quite small for sufficiently small core size and a high degree of computational 
accuracy is required for resolution of the stability criterion. In order to achieve such 
an accuracy for small-area vortices, the steady shape of the vortices needs to be 
evaluated to a high degree of accuracy also. Dritschel does not state the accuracy to 
which the shapes were evaluated in the specific case of N = 7. For N = 8 small-area 
vortices, he needed to evaluate the steady shapes to an accuracy of O( lo-') to achieve 
a four-figure accuracy in growth rate. The present asymptotic results for small-area 
vortices show that in the particular case of N = 7, the demand on accuracy in a 
numerical calculation would be considerably higher, such that a reliable resolution of 
the stability criterion cannot be given for vortices of sufficiently small core size. For 
large-area vortices, the requirement in accuracy in evaluating the steady shape of the 
vortices is apparently not so high. Comparison between the present asymptotic 
results and Dritschel's numerical results would then suggest the existence of a 
threshold core size for the mode in question, such that the mode is unstable for core 
size larger than the threshold value but is stable otherwise. This is, however, of 
academic interest only since, according to both results, the system is unstable to the 
other mode of any non-zero value of core size. For large enough vortices, Dritschel 
finds that for all values ofN(N > 1) considered, the system is unstable to disturbances 
which distort the shapes. 

The stability calculations for small and large vortices suggest how a circular vortex 
sheet, through the action of Helmholtz instability and viscous decay, could 
degenerate into a rotating system of N < 7 finite vortices on the vertices of a regular 
polygon. As the vortex becomes large enough through viscous diffusion, the given 
system becomes unstable and evolves into a stable system of fewer vortices, the 
process being repeated until a single finite core results. These suggestions are fairly 
consistent with observations of Weske & Rankin (1963) and have potential 
implications for the evolution of tornadoes. 

2. General theory 
In this section the equations governing the two-dimensional motion of a uniform 

vortex of finite core when subjected to an external irrotational velocity field (U,, V,) 
are derived. (UE, V,) is the velocity contribution due to sources other than the 
vortex, such as other vortices, image vorticity and so on which produce an 
irrotational velocity field in the vicinity of the vortex. If w is the vorticity in the core, 
the circulation r r o u n d  the vortex is given by 

r= [[RAwdzdy = wA, (2.1) 

where RA is the region occupied by the vortex and A is its area. Since r is conserved 
and w is constant, the area A is an invariant of motion. 

We define a complex variable x = x+iy. The flow in the vicinity of, but exterior 
to, RA is irrotational and the flow field at  an external point x can be described by a 
complex potential W ( z )  = Q, + i$ where 

w(z) = wl(z) + wE(Z). (2.2) 

Here, WE denotes the contribution due to the external velocity field so that 
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while W, denotes the contribution to the potential due to the 
by 
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UE-ivE = dWE/dz, 
vortex and is given 

r 
&(z )  = /IRA log ( z  - z') dz' dy' 

r r  

after applying the complex Green's theorem for R, traversed anticlockwise ; R, is the 
boundary of R,. C is a constant, a bar denotes complex conjugate and in the 
integrand, with z fixed, that branch of logarithm is chosen which remains single- 
valued as R, is traversed. We define the position of the vortex by its centroid, z,, 

i 
Z, = +[IRA oz dz dy = - z2 dz 

4A fRc 
after using (2.1) and applying the complex Green's theorem. Then the velocity of the 
vortex centroid is given by 

after an integration by parts. Here (and subsequently) a bar denotes complex 
conjugate while 8 is a Lagrangian parameter which characterizes a boundary point 
and the integrand is evaluated on the boundary. Now, Pullin (1981) has shown that 
for a boundary point of a uniform vortex, 

where the choice of the branch of logarithm and the way R, is prescribed is as in (2.3). 
On substituting this into (2.5), it  can be shown that 

where Im refers to the imaginary part. It is shown in Appendix A that the second 
term on the right-hand side of (2.7) is zero. Further since WE is analytic, we can use 
the Green's theorem and the Cauchy-Riemann relations in (2.7) to show that 

where R, is traversed in an anticlockwise sense. Note that in the absence of any 
external flow (so that WE is constant), (2.8) expresses the invariance of the centroid. 
Equation (2.8) does not appear to be given anywhere else and is believed to be a new 
result. 

Since WE@, t )  is analytic in the vicinity of the vortex (assuming any singularity in 
WE is sufficiently distant from z,), its value on the boundary can be expressed as a 
Taylor series about z,. On substituting this series into (2.8) and using the definitions 
of A and z... we obtain 
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where (2.10) 

The series will converge provided max (12'- zJ) < radius of convergence of the Taylor 
series for WE for 2' on the vortex boundary. 

Similarly, by expanding the integrand in (2.3) as a Taylor series about z = z, and 
using the definitions of A and zv, we have 

on swapping the order of the integration and the summation ; convergence of the 
series is assured if I z - z , ~  2 max ( lz ' -zvl)  where zf is a point on the boundary. 

In both (2.9) and (2.11), for a vortex of small area A ,  the' first term on the right- 
hand side corresponds to the point-vortex result while the sum represents an O(A2) 
correction due to the finite size of the vortex. 

Thus for a given instantaneous value of WE(z, t ) ,  the motion of the vortex centroid 
can be followed and its induced velocity potential determined if the instantaneous 
position of the vortex boundary is known. Suppose that this is given by 

zffb(8, t )  = z,(t) +r,,(8, t )  eie. (2.12) 

The condition that the boundary of the vortex is a material surface implies that 

(2.13) 

where ur(r, 8, t )  and u,(r, 8,  t )  are the radial and azimuthal components of the velocity 
relative to the vortex centroid. At  zUbr u, and u, are given by 

For WE(z, t )  analytic in the vicinity of the vortex, the second and third terms on 
the right-hand side are respectively obtained from the Taylor expansion of WE about 
z, and by the expansion (2.9). WI(zVb,t) is given by (2.3), the series (2.11) being, in 
general, not convergent on the vortex boundary. Thus, on using integration by parts 
in (2.3) (see Pullin 1981), 

m m 

In+, (2.15) C, - 
r a-z' 

(ur - iu,) e-ie = - -dz' + r, c, r,",, eins- 
4 d  f z-zf  n-1 n-2 n + l '  

where 
cn = -(-) 1 dn+lWE 

n!  dzn+l E-zu 
(2.16) 

We consider the case of a vortex of small area A such that 

E = A/A2 + 1, (2.17) 

A being a typical length associated with the external flow. We assume that in the 
absence of the external flow the vortex is circular and expand 

rub = /is;( 1 + w3 + eb4 + . . .I. (2.18) 
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The absence of the O(s) term in (2.18) reflects the fact that the velocity induced by 
a uniform vortex of elliptical shape differs from that of a circular vortex by O(e2) (see 
Meiron et al. (1984)). The definition of the area A and the centroid z, respectively 
imply that 

and 1; r:b eie d0 = 0. 

(2.19) 

(2.20) 

A change in the vortex shape occurs on a timescale A / T  which is small compared 
with the timescale A 2 / r  associated with the external field. It is therefore convenient 
to introduce a scaled time variable t = ET and write 

a i a  a 
at taT at 
- = --+- 

in (2.13). Then on substituting for rub from (2.18) and u(z,,,t;T) from (2.15) into 
(2.13) and equating coefficients of powers o f t  to zero, we obtain a set of equations 
for r3,  r4, r5 etc. ; use is made of the fact that  in (2.14), dz/dt = (dWE/dz),u+0(E2r/A). 
We restrict ourselves here to solving for r3 and r4. Assuming that the core boundary 
remains smooth, we expand 

m m 

r3 = C aneine, r4 = bneins, 

l:lXl:l 
n--m 

InlCo, 1 

where a,(t; T) and b,(t ; T) are complex and In1 = 0 , l  have been excluded in view of 
(2.19) and (2.20). Substituting for r3 and r4 in (2.13)-(2.18), we obtain 

(2.21) 

where 
determining r3 and r4, we obtain, after reintroducing A and t in (2.18), 

= 1 if i =j, and 8, = 0 if i +j. On solving (2.21) for a,, and b, and hence 

where c, and d ,  are complex constants to be determined from initial conditions and 
the derivatives are evaluated at  the centroid z,. The summations represent 
homogeneous solutions of (2.21) and correspond to  free oscillations of a circular 
vortex, travelling around the vortex boundary with angular speed r(n - 1)/2nA, in 
agreement with known results (Lamb 1975, p. 231). 
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Jimenez (1988) describes an alternative method for evaluating the vortex 
boundary which involves conformally mapping the boundary onto a circle. To the 
order calculated above, the two results are in agreement. 

On substituting expression (2.22) for rub in (2.9) we obtain 

where B and D are arbitrary complex constants determined by initial conditions and 
f m ( t )  = exp (imrt/2A). Further, substituting (2.22) into (2.11) gives 

i A 2  

2ni 

where B, D and f m ( t )  are as in (2.23). The first two terms on the right-hand sides of 
(2.23) and (2.24) can be shown to be in agreement with the corresponding terms in 
the original derivation by Kida (1982); the third term represents an O(A3/As)  
correction. 

When the flow field consists of N identical uniform vortices of finite core, the 
motion of the centroids is governed by 

(2.25) 

(v = 1,2,  . . . , N )  in view of (2.23) and (2.24) with z , ~  = z,-zk. The shape of the vth 
vortex is given by (2.22) where 

The oscillatory terms in (2.26) have a period of O(A/T) which is short compared 
with the timescale of O ( A 2 / r )  associated with the external flow. Note that to 
0 ( A 3 / A s ) ,  only the terms corresponding to m = 2 and 3 in (2.26) affect the motion of 
the centroid, causing it to oscillate rapidly about a mean position. In steady flow 
these terms are absent. Further, perturbation modes corresponding to these fast 



304 M .  R. Dhanuk 

oscillations are stable. Henceforth, therefore, we consider motion in which these 
terms are absent. Such considerations hold provided the core area is small enough. 
For large-area vortices, when the timescale of these oscillations is comparable to that 
of the external flow, the oscillatory terms would need to be taken into account. 

Professor D. W. Moore has pointed out that in the case of steady motion, equation 
(2.23) to O(A2/A4) can also be derived by noting in (2.9) that to that order the shape 
of the vortex is elliptical, the ratio of the length of the axes being related to the 
external strain rate experienced a t  the centroid (Moore BE Saffman 1971). Details of 
this derivation, due to him, are given in Appendix B. This derivation also serves to 
illustrate that the result (2.23) to O(A2/A4) is consistent with the 'second-order 
model' of Melander et al. (1986) which is based on the assumption that the shape of 
a vortex in a strain field can be approximated by an ellipse of appropriate aspect 
ratio and orientation and on retaining nonlinear terms in equation (B 7) for the strain 
rate. In an asymptotic expansion of the type presented here, these nonlinear terms 
imply higher-order contributions to the velocity and for consistency such terms 
cannot be retained in (B 7).  However, Melander et al. show that retaining these terms 
in their model gives, a t  least for two vortices, a good approximation to the velocity 
of the vortices. A quantitative comparison between the present results and those of 
Melander et al. is presented in $3. 

3. A polygon of finite vortices 
Here we consider the motion of N identical vortices of finite core positioned such 

that their centroids lie, regularly spaced, on the circumference of a circle of radius a. 
The vortices move along the circle with an angular velocity a,. Thus with the origin 
at the centre of the circle, the positions of the centroids at  time t are given by 

( w =  1 , 2  )..., N ) .  (3.1) = = ae2ni(v-l)/N+iQNt 
v -  v 

This satisfies the equation of motion (2.14) provided that 

where 

(3.3) 

, a = A / m 2 .  ) E = e2xin/N 
n 

The sums in (3.3) have been evaluated using the method given in Appendix C. If we 
put a = 0, we recover the result for the angular velocity of a polygon of N point 
vortices (Havelock 1931). Further, putting N = 1 in (3.2) gives 52, = 0, as required. 
The position of the vortex boundary is given by 

zVb = Z,, = ae ' t~ ( l+ ( rv , /a )e i 'e -$~) )  (w = 1,2 ,  ..., N )  (3.4) 
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a = (core area)/xu2 TIT, 

N a0 Numerical Present Numerical Present 

0.900 0.003 0.003 1 .000 1 .000 
0.700 0.031 0.031 0.999 1 .000 

0.105 0.105 0.998 0.999 
0.242 0.252 0.989 0.992 
0.389 0.497 0.947 0.968 

0.900 0.003 0.003 1 .000 1 .000 
0.030 0.031 1.000 1 .000 
0.102 0.104 0.998 0.999 
0.218 0.247 0.988 0.993 
0.244 0.494 0.943 0.974 

0.900 0.003 0.003 1 .000 1 .om 
0.031 0.031 1 .Ooo 1 .ow 
0.104 0.106 0.999 0.999 
0.210 0.269 0.991 0.996 

0.900 0.003 0.003 1 .Ooo 1 .Ooo 
0.031 0.031 1 .000 1 .Ooo 
0.1 15 0.114 1 .Ooo 1 .Ooo 
0.154 0.150 0.998 0.999 0.450 

0.900 0.003 0.003 1 .om 1 .Ooo 
0.012 0.012 1.001 1 .Ooo 
0.032 0.032 1.001 1 .ow 
0.086 0.080 0.999 0.999 

[!:E; 

3 1;: 0.300 

{!:: 
{ ::z 
{ ::E 

0.500 

TABLE 1. Comparison between the present results and the numerical results of Dritschel (1985) for 
steady flow. a, is the ratio of the minimum to maximum distance of the boundary of a vortex from 
the centre. T is the period of rotation and T, is the period of rotation of an equivalent system of 
point vortices of strength r and placed a t  the centroid position. For a given value of a,, a in the 
‘Present’ column has been obtained by iteration on equation (3.5) ; also, in Dritschel’s notation, 
a =Sz(l+(N-1)(N-5)82/6+O(61)) with S =  ( l -uo) / ( l+uo)  

where 

with 
rVb = ( A / K ) ~  (1  - aaz cos 2(e - $J + d a 3  cos 3(8 - $,J + 0(a2)) 

(N- 1) (N-5 )  (N-  1) (N-  3) 2qv-  1) 

(3.5) 

; N +Q,t .  
16 

; a3 = 
12 

a2 = 

Note that for N = 5 vortices, the leading-order effect due to finite size in (3.2) and 
(3.5), which correspond to an elliptical deformation of the vortex, vanish; using the 
results of Appendix B it can be shown that this is associated with the fact that, to 
leading order, the strain field at a vortex due to the other vortices also vanishes. 

In order that the vortices do not touch each other, we require that, approximately, 

a < sinZ (KIN) for N > 1. (3.6) 

The vortex shapes for a/sin2((x/N) = 0.5 for various values of N are shown in 
figure 1. These compare fairly well with those obtained numerically by Dritschel 
(1985). For a range of the ratio of minimum to maximum distance of the vortex 
boundary from the centre, Dritschel gives values of core area and period of rotation 
to three decimal places for various values of N. These are compared in table 1. The 
agreement is fairly good for small core area. The value of B2 given by (3.2) is 
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0-Q, 

FIGURE 1 ( a q ) .  Shape of vortices for N = 2,3 ,  ..., 8 vortices of core area 
a( = A/Ra2) = 0.5 sin2 ( n / N )  in steady angular motion. 



Stability of a regular polygon of $finite vortices 307 

U Qmlo Q Y Y I o  Q2/w % / w  
0.012272 0.003068 0.003068 0.003068 0.003068 
0.060484 0.015 13 0.015 13 0.015 128 0.015 121 
0.165 178 0.041 46 0.041 46 0.041 4 0.041 295 
0.241 664 0.061 08 0.061 01 0.061 0.060 416 
0.325525 0.08344 0.083 09 0.083 0.081 381 
0.389359 0.102 7 0.1008 0.10 0.097 340 

TABLE 2. Comparison of angular rotation rate 8, for two corotating vortices as given by (3.2) with 
corresponding values as given by Melander et al. (1986) and evaluated numerically using contour 
dynamics (QCD) and their moment model (aMM). Qcv refers to the result corresponding to a circular 
vortex and is given by Qcv/o = @, which is equal to 1/p2 in the notation of Melander et al. 

a0 a x  104 x 104 (a , /w)  x 104 (szcv/w) x 104 

0.98 1.020 512 44 1.530 768 7 1.530 768 67 1.53076867 
0.96 4.168 41 3 49 6.252 624 87 6.2526206 6.252 6202 
0.94 9.58376491 14.375705 14.375 652 14.375647 

TABLE 3. Comparison of 8, as given by (3.2) with numerically evaluated values, QcD, using 
contour dynamics (by courtesy of a referee) for seven corotating vortices. a, and QCv are 
respectively as in tables 1 and 2. For a given value of a,, u is evaluated using the formula given 
beneath table 1 including the O(P) term, the coefficient of which for N = 7 vortices is 10716 

compared in table 2 with corresponding numerically evaluated values Q,, as given 
by Melander et al. (1986) and obtained using the contour integration method (that 
is, through numerical integration of an equivalent of equation (2.6)) and with QMM, 

obtained using their second-order model. Finally, 52, for fairly small vortices is 
compared with a,, and table 3 (the author is grateful to a referee for supplying these 
latter values). The results are in fairly good agreement in both cases. 

It is interesting to consider the limiting case where the radius a+ 00, N +  co with 
2xa/N+A, a constant. This leads to a linear array of finite uniform vortices of 
spacing A .  If we set a = NA/2n and v = 1 in (3.2)-(3.4) and let N +  00, we find that 

sz, = O(l/N) (3.7) 

(3.8) and 

where $h = 0 - i ~ .  It may be noted that the O(A1/A3) term in (3.8) vanishes in the 
limit. From (3.6) we have that A / A 2  < 0 . 2 5 ~  for the vortices not to touch each other. 
The expression for the vortex shape obtained above is in agreement with that given 
by Saffman & Szeto (1981) for a linear array. 

rlb = (A/x)i (1 +A(x2/3A2) cos 2$h + O(A2/A4)), 

4. Stability of the vortex polygon 
In this section we consider the stability of the steady-state arrangement of vortices 

described in $3. We restrict the analysis to O(A2/A4) here. For small-area vortices, 
the fast shape-deforming modes represented by the oscillatory terms in (2.26) are 
stable. We therefore consider these to be absent and focus attention on the 
displacement-type modes. For large-area vortices, the shape-deforming modes 
evolve on the same timescale as the motion of the centroid and must be taken into 
account. 
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Suppose that the vortices are perturbed from their steady-state positions given by 
(3.1) by infinitesimal two-dimensional disturbances which merely shift the vortex 
lines in the flow. Let the perturbed positions of the centroids of the N vortices, 
Z, = Zv (v = 1 , 2 ,  ..., N )  be given by 

zv = Z v ( l + E I Z ; ) ,  El < 1 ,  (4.1) 

where 2, is the unperturbed position of the vth vortex and is given by (3.1). Then on 
substituting this expression in (2.17) and retaining terms to O(el), we find that 0(1) 
terms are satisfied identically in view of (3.2)-(3.5) while O(s,) terms are satisfied if 

n+v p + n  

a -  

n + v  

where 
Zjk = Zj-Zk = Zj(1-Ek-j);  f j k  = ZjZ;-ZkZ; = Zj(Z;-Z;Ek-j) 

E = e2nim/N 
and m 

We follow Havelock (1931) and consider the stability of the vortex polygon to the N 
normal modes of the disturbance. Thus we have 

( k = 0 , 1 , 2  ,..., N - 1 ,  ~ = 1 , 2  ,..., N ) ,  (4.3) zI = Z;k = Xeat+2nikv/N 
v -  

where x is a complex constant. The stability of the system to a given mode then 
depends on the sign of the real part of g. 

We consider the perturbation equation for the Nth vortex. On substituting (4.3) 
with v = N into (4.2), we find, after a little manipulation, 

-r 
(u- iQ,) x = -{xH 2nia2 + a2(xC+ 2jgL2) + O(a3)} ,  (4-4) 

where, with Q,, = 1 -exp (2ni(s+ 1 )  r / N )  and Em as in (4.2), 

H =  ,-l x e = ; ( k ( k - N ) + ( N - l ) ) ,  Q 
n-1 Qno 

( N -  1 )  (5-N) 
48 

- - ( k ( k - N )  (k2-Nk:+4)- ( N -  1) (N-5)), 

N-1 - 
L =  - Qnk --(k(k-N)(2k-N-3)+(N-l)(N-5)), - - 1  

n-1 QL 12 

SZ, is given by (3.2) and a is as in (3.3). The sums in (4.4) are over the Nroots of unity 
and were evaluated using the method given in Appendix C. The expressions were 
checked by evaluating the sums numerically for a number of values of N(k = 0, 1, . . . , 
N - 1 ) .  On separating the real and imaginary parts in (4.4), it can be shown that 
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solutions of the form (4.3) are possible provided that the following dispersion relation 
is satisfied : (y)’ = H2-Q&O+2a2(HC-QS2NOD)+O(a3) ,  (4.5) 

where D = 2L2+QN2,  and Q,,, Q N 2  are given by (3.3). 
Putting a = 0 in (4.5) we recover Havelock’s (1931) result for the stability of a 

polygon of point vortices. 
The k = 0 mode of disturbance corresponds to a small change in the radius 

together with a slight rotation of the circle on which the centroids lie. As may be 
expected, we have from (4.5) that u2 = 0 in this case. Further, for N = 1 (so that 
k = 0 ) ,  u2 = 0 also, as required. 

The stability of the array depends on the sign of u2. For modes k = 1 and 2, the 
array is always stable and oscillates with frequency given by 

\ j k - 1  50 

respectively, for N > 1. In (4.5) P J k ,  N )  = H2-Qg0  is symmetrical in k about k = LJ 
or k = B(N+ 1) and has a maximum value, Po, = Po(LJ, N )  or Po(f(N+ l), N ) ,  according 
as N is even or odd. Po, is negative for N < 7, zero for N = 7 and positive for N > 7. 
Thus if a = 0, so that we have a regular polygon of N point vortices, the system is 
respectively stable, neutrally stable and unstable. 

The term P 2 ( k , N )  = HC-Q,,D is not symmetrical in k so that cr2 is not 
symmetrical in k.  For N < 7, the maximum value of P2 = Pz, < 0 so that finite 
uniform vortices of small core size on the vertices of a regular polygon are stable for 
these values of N .  

For N = 7, P2 > 0 for k = 4 and 5 modes only, it being maximum for the latter. 
Po c 0 for k = 5 so that the sign of u2 will depend on the value of a2. For the maximum 
value of a2 allowed (cf. (3 .6) ) ,  u2 < 0 so that to O(a2) the polygon is stable to this 
mode of disturbance. However for k = 4, Po = 0 so that u2 > 0 for a2 + 0. The case of 
u2 corresponding to N = 7 is plotted against mode number k for various values of a 
in figure 2 (a )  and against a2 for different values of k in figure 2 (b).  Thus a regular 
polygon of seven finite-core uniform vortices is unstable. 

For N > 7 ,  and k = LJ if N is even or k = S(N+ 1) if N is odd, P2 > 0 so that since 
Po, > 0 for this value of k, u2 > 0 for these values of N .  Thus a polygon of N 2 7 finite 
uniform vortices is unstable, the growth rate of disturbances being greater than in 
the case of point vortices. 

The linear stability of a polygon of N < 8 finite vortices was numerically evaluated 
by Dritschel (1985). He considered both displacement-type disturbances as well as 
those which deform the vortex shape. He showed that for small-area vortices, the 
polygon is stable if N < 7 and unstable if N = 7 or 8 and that u2 for finite vortices is 
not symmetrical about k.  These results are consistent with the above. However, for 
N = 7 ,  unlike the present case, he obtains that the array is unstable to two 
displacement-type modes, corresponding to k = 3 and 4 in the present notation. For 
these modes, Po is zero (that is, the polygon of point vortices is neutrally stable). Thus 
we see from the dispersion relation (4.5) that in a numerical calculation, in order to 
resolve its sign and hence establish whether the system is stable or not, ( ~ c u ~ u / ~ ) ~  
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FIGURE 2. (a) Dependence of growth rate on modes of disturbance for N = 7 for three values of 
a = A / d .  (b) Dependence of growth rate of various modes of disturbance on (core area)2 for case 
N =  7. 

needs to  be evaluated to  O(a2) .  For small enough values of the core size, the 
magnitude of this latter term can be quite small. Dritschel does not provide 
information about the accuracy of his results for the specific case of N = 7. For 
N = 8, he states that  in order to evaluate the growth rate to 4 decimal places, the 
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steady shapes of the vortices had to be evaluated to O( lo-') for a = O( lo-') and this 
appeared to place a severe strain on the computations. For the same value of a,  with 
N = 7, (xa2a/r )2  needs to be evaluated to O( lO-'O) in order to resolve its sign. The 
corresponding requirement on the numerical accuracy of the steady shape of the 
vortices must therefore be enormous. If the same accuracy as in the case of N = 8 
vortices is used, we note that this would be inadequate to resolve the sign of 
( ~ a ~ a / r ) ~ .  In  fact, in view of (4.5), a reliable numerical determination of stability for 
sufficiently small core size cannot be given for the case of N = 7 vortices. 

For larger values of a, the requirement on the numerical accuracy of the steady 
shapes is apparently not so demanding and in this case comparison between the 
present asymptotic results and Dritschel's numerical results would suggest the 
existence of a threshold value of a, aT say, such that the k = 3 mode is stable for a < aT 
and unstable for a 2 aT. This is, however, of academic interest only since the k = 4 
mode is, according to both results, unstable for any non-zero value of core size. 

Moore (1981) has considered the representation of a circular vortex sheet by point 
vortices and has shown that the chaotic behaviour which sets in in a numerical 
calculation can be attributed to the instability of a polygon of N > 7 point vortices. 
We can examine the effect of representing the vortex sheet by N uniform vortices of 
small, finite core. Suppose the total strength of the sheet is r0 = MAN so that in (4.5) 
r = r o / N  and a = a o / N ,  where a. = NA/na2.  Then 

2xa2u 1 2a2 

(-) r0 = " ( H 1 - R R 0 + $ ( H C - R , , D ) + O  
(4.7) 

The most unstable mode corresponds to k = 
is odd. For this mode 

if N is even and to k = i (N+ 1) if N 

Thus the growth rate of the most unstable mode for N 2 7 is greater for finite uniform 
vortices than for point vortices and increases with N .  This means that representing 
a circular vortex sheet by small finite-core uniform vortices, instead of point vortices, 
would lead to chaotic behaviour at  an earlier time. 

Finally, by considering the limit a + co, N +  co such that 2xa/N+ A as in $3, we 
can examine the stability of a linear array of finite uniform vortices. We put + = 
2xk/N and a = N A / 2 x  in (4.5) and let N +  co. This gives 

The leading-order term in (4.9) gives the growth rate of disturbances to a linear 
array of point vortices (Lamb 1975, p. 225). Note that the pairing mode is the most 
unstable mode which is consistent with the prediction of Meiron et al. (1984). u2 is 
symmetric in + about + = R .  Saffman & Szeto (1980) presented an argument based 
on energy considerations which suggested that a linear array of finite uniform 
vortices is unstable. The above result supports this suggestion. a2 for this case of a 
linear array is plotted against + in figure 3 (a)  and against A2/A4  for + = R in figure 
3 (b).  
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FIQURE 3. (a) Limiting case of a linear array. The growth rate is plotted against qi (see (4.9)) for 
various values of A / A 2 ,  where A is the separation distance between vortices. ( b )  Limiting case of 
a linear array. The growth rate is plotted against ( A / L I ~ ) ~  for q5 = n. 

5. Conclusions 
Equations of motion of a uniform vortex of small but finite core subjected to an 

external velocity field are obtained using a complex variable formulation. The 
equations are used to obtain the steady configuration of N identical uniform vortices 
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arranged in a circular row, so that the vortices are at  the vertices of a regular 
polygon. It is shown that the circular row is stable to infinitesimal plane disturbances 
which displace the vortex centroids from their steady positions if N < 7 and unstable 
if N 2 7. On comparing this result with the corresponding classical result for point 
vortices, we find that finite core size has a destabilizing effect on the stability of the 
circular row of vortices. As a limiting case, it is shown that a linear array of finite 
vortices in the absence of a wall is also unstable and the growth rates for small 
disturbances are given. 

The paper is based on work carried out by the author whilst he was at  Topexpress 
Ltd, Cambridge. The author is grateful to Professor D. W. Moore for useful 
discussions on certain issues raised in this work. 

Appendix A. Contribution to centroid motion due to vortex-induced 
velocity 

In this section we show that the second integral in (2.7), 

I = fRczIm[ fRCln (z-z’)dz‘dz 1 = 0. (A 1) 

In -(A l) ,  the branch of logarithm is chosen which makes the integrand single- 
valued as R, is traversed in an anticlockwise sense. We have 

I =  fRczIm[ fRc$((z-z’)ln(z-z’))dz‘dz 1 = 0 

I = &ffRc (i (z(z - z’) In ( z  - 2’)) - ( z  - z’) In ( z  - z’) dz‘ dz 1 
1 dz - zffRc (&(z(z- z‘) In (Z- z’)) - - (Z- z‘) In (z- z‘) 

dz 

since the integrand is single-valued. If we denote the first and second terms on the 
right-hand side of (A 3) as J1 and J2 respectively, then 

J1 = - ffRc (i ( ( z  - z’)~ In ( z  - 2’)) - ( z  - 2’) dz dz‘ 1 
= o  

and since in J,, z and 2’ are dummy variables, swapping them should not change its 
value. However, 

(Z-z‘) In (Z-z‘) dzdz‘ = (z’ -q (In (z‘-q + In ( - 1))  dz dz’ 

= -J2. 
Thus J, = 0 as well. 
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Appendix B. Derivation of (2.23) to O(A2/A4) for steady flow using Moore 
& Saffman's (1971) results 

Professor D. W. Moore has shown that equation (2.23) to O(A2/A4) for s&ady flow 
can be derived using the results of Moore & Saffman (1971). His calculation is 
presented here. 

From (2.9), after an integration by parts we have that to leading order 

where a prime denotes differentiation with respect to z and the path of the integral 
is traversed in an anticlockwise sense. 

We approximate the steady shape of the vortex by an ellipse with origin at z, and 
orientated so that the major axis subtends an angle q5 to the x-axis. Thus if a and b 
are respectively the lengths of the semi-major and semi-minor axes of the ellipse and 
8 is the azimuthal angle measured anticlockwise from the major axis, the boundary 
of the vortex is given by 

Substituting (B 2) into (B 1) and noting that 

zvb - z, = e'+(a cos 8 + ib sin 0). (B 2) 

dcvb = - ei4(a sin 8 + ib cos 8) dB 

and area A = nab, it can be shown that 

M = -ad(a2-b2)  2 e2'9. 

Suppose that a / b  = 1 +r. Then 

It now remains to determine 7 and q5 from the calculation of Moore & Saffman. 

the complex potential due to the external field is given by 
Suppose that the uniform vortex is subjected to a plane strain with rate e,  so that 

where 

WE, = +i e, zt + Cz, +D,  

z - z, = z1 ei+ 

and C and D are constants. Moore & Saffman show that 

7 = 4 e 0 / w  (B 7)  

where w is the uniform vorticity (although the constants C and D are zero in their 
calculation, a non-zero value of C represents a uniform translation and the problem 
can equivalently be considered in a moving frame of reference). Expanding WE(z) in 
(2.2) about z, and using (B 6), we have 

W,(Z) = W,(Z,) + z1 ei+ W',(Z,) + ?jz; e2i$W'k(z,) + . . . . (B 8) 

To O(zt), this must agree with W,,(Z). Thus, comparing the coefficient of x i ,  

e,e2'$ = iV;(z,). 
Thus 

M = -  
nw 
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Hence, using r= wA, and substituting (B 10) into (B 1) we obtain (2.14) with 
terms of O(A3/As) omitted. 

Appendix C. Sum over roots of unity 
Here we present the method used in evaluating sums of the form 

E:: ( q  = 0,1,2,  ..., k,  ..., N-l),  
N-1 x 
n-1 ( l - E n ) k  

where En = exp (2xinlN). (C 2) 
Consider the contour integral 

where the path C is chosen to enclose the unit circle and is prescribed in an 
anticlockwise sense. Inside C, I N  has poles at Z = En (n = 1,2, . . . , N- 1) with residues 
rn given by 

so that 
N-1 

I N  = C r,+r,. 
n-I 

But since on C, Z + 0, 

on transforming to the (;-plane with (; = 1/Z, C‘ being the image of C. Inside C‘, the 
transformed integrand is analytic if q < k and has a pole at  (; = 0 if q 2 k with residue 
‘qk ’ 

N( - l)”+l(q- 1) ! 
9 q 2 k  

Thus combining (C 5) and (C 6 )  
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